Quality Improvement of Non-manifold Hexahedral Meshes for Critical Feature Determination of Microstructure Materials

نویسندگان

  • Jin Qian
  • Yongjie Zhang
  • Wenyan Wang
  • Alexis C. Lewis
  • M. A. Siddiq Qidwai
  • Andrew B. Geltmacher
چکیده

This paper describes a novel approach to improve the quality of non-manifold hexahedral meshes with feature preservation for microstructure materials. In earlier works, we developed an octreebased isocontouring method to construct unstructured hexahedral meshes for domains with multiple materials by introducing the notion of material change edge to identify the interface between two or more materials. However, quality improvement of non-manifold hexahedral meshes is still a challenge. In the present algorithm, all the vertices are categorized into seven groups, and then a comprehensive method based on pillowing, geometric flow and optimization techniques is developed for mesh quality improvement. The shrink set in the modified pillowing technique is defined automatically as the boundary of each material region with the exception of local non-manifolds. In the relaxationbased smoothing process, non-manifold points are identified and fixed. Planar boundary curves and interior spatial curves are distinguished, and then regularized using B-spline interpolation and resampling. Grain boundary surface patches and interior vertices are improved as well. Finally, the local optimization method eliminates negative Jacobians of all the vertices. We have applied our algorithms to two beta titanium datasets, and the constructed meshes are validated via a statistics study. Finite element analysis of the 92-grain titanium is carried out based on the improved mesh, and compared with the direct voxel-to-element technique. Copyright c © 2000 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Feature Preservation in Octree-Based Hexahedral Mesh Generation for CAD Assembly Models

This paper describes an automatic and robust approach to convert 3D CAD assembly models into unstructured hexahedral meshes that are conformal to the given B-Reps (boundary-representations) with sharp feature preservation. In previous works, we developed an octree-based isocontouring method to construct unstructured hexahedral meshes for manifold and non-manifold domains. However, sharp feature...

متن کامل

An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.

This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with...

متن کامل

Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow

This paper describes an approach to smooth the surface and improve the quality of quadrilateral/hexahedral meshes with feature preserved using geometric flow. For quadrilateral surface meshes, the surface diffusion flow is selected to remove noise by relocating vertices in the normal direction, and the aspect ratio is improved with feature preserved by adjusting vertex positions in the tangent ...

متن کامل

Quality Improvement and Feature Capture in Hexahedral Meshes

Building high-quality quadrilateral/hexahedral meshes directly from volumetric data is hard. Existing algorithms for generating meshes from volumetric data are based on primal and dual isocontouring algorithms, and current research focuses on improving the quality of such meshes. Most techniques are based on isocontouring techniques, and work by generating a grid of hexahedra on the interior/ex...

متن کامل

4 . 1 Automatic 3 D Mesh Generation for a Domain with Multiple Materials ∗

This paper describes an approach to construct unstructured tetrahedral and hexahedral meshes for a domain with multiple materials. In earlier works, we developed an octreebased isocontouring method to construct unstructured 3D meshes for a single-material domain. Based on this methodology, we introduce the notion of material change edge and use it to identify the interface between two or severa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009